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i. INTRODUCTION

Let f be a continuous real-valued function on [0, +- c0) and define

fl = sup{ f():0 < x <r}  for r=0
and

11 = sup{l f(2)]: 0 < xJ.

For each nonnegative integer n define =, to be the set of algebraic polynomials
with real coeflicients of degree not exceeding #.

We investigate the following problem: For which functions fe C[0, + c0)
does there exist a number ¢ > ! and a sequence of polynomials { p,}._,
such that p, e m,,n =0,1,2,..,, and

lim sup (i(1/f) — (1pai) ™ < 1/g? (1.

The complete answer to this problem is not yet known although many
authors in recent years have investigated this. If there exists a ¢ > 1 and a
sequence of polynomials such that this happens for some f then we say f has
geometric convergence. Thus we seek to classify all fe C[0, 4-o0) which
have geometric convergence.

The first result on this problem established that f(x) == ¢* has geometric
convergence (see [4]). This result was extended to other functions in [6]. The
first in-depth study was made by Meinardus et al. [7]. They obtained a
necessary condition as well as a sufficient condition for f to have geometric
convergence. Since the appearance of [7], several researchers have suggested
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that the necessary condition obtained in [7] may also be sufficient. In parti-
cular, Roulier and Taylor [9] obtain a less restrictive sufficient condition and
conjecture that the necessary condition in [7] is also sufficient. Blatt [f. 2]
further weakens the hypotheses of the sufficient condition given in [7]. These
results further suggested that the necessary condition in [7] might also be
sufficient.

In this paper we obtain a new necessary condition for geometric conver-
gence. This in turn, provides the machinery for constructing a counterexample
to the above conjecture. That is, a function f is defined which fails to have
geometric convergence, and yet f satisfies the necessary condition obtained
in {7]. In addition we obtain a new sufficient condition that is essentially
different from those already known. This, in turn, will be used to generate
new examples of functions which have geometric convergence but with
properties that are somewhat surprising.

The details of the previous results and the terminology needed o under-
stand these are presented in the next section.

Other related results and a large bibliography of such results appear in the
survey paper [8].

2. NOTATION AnND PRrREVIOUS RESULTS

Let r = 0 and s = 1 be given, and let E(r, s) denote the unique ellipse
in the complex plane with foci at x - 0 and v r and semimajor and
semiminor axes a and b, respectively, with bla - (5% - D(s? = D IFf(z) s
any function analytic inside and on the boundary of E(r. s) define

MAr, sy maxi, f(z): - E(r, 5).
The necessary condition obtained in [7] is given in the following theorem.

THEOREM 2.1, Let f be a real continuous function (=.0) on [0, ~- %), and
assume that there exist a sequence of real polynomials {p,\, ., with p,< 7,
forn « 0, 1,.... and g 1 such that

lim sup ((LfY - (Up )y DA Tig < L (2.1)

Then, there exists an entire function F(z) with F(x)  f(x)Yforall x .- 0, and F
is of finite order p. In addition, for every s - 1, there exist constants K
K(s,q) > 0,8 = 0(s,q) = 0, and ry - rfs.q) 0 such that

M(r,s) o KG 1) forall v ory . (2.2)

The sufficient condition in [7] is given by the following theorem.
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THEOREM 2.2. Let f(2) = Yy axz* be an entire function with ay, > 0 and
a, = 0 for all k = 1. If there exists real numbers A > 0, s > 1,0 > 0, and
ro > 0 such that

Mfr,s) < ALY Sorall r =i,

then there exists a sequence of real polynomials { p,}._, with p, € w, for each
n 2= 0, and a real number q = 51159 > 1 such that

lim sup (I(1/f) — (1/pu) V" = 1/g < 1.

n-om

It is suggested in [7] that the hypotheses here are probably too strong.
A more general theorem was given by Roulier and Taylor [9] and this was
generalized further by Blatt in [, 2]. We give this latter theorem [2]. In order
to do this, we need to introduce some additional notation. Let

0<x, <xp3 < <Xy < 00

with corresponding nonnegative integers 5, ,..., B, be given. Define

- a, real, i an entire transcendental function whose
N = {h(z) = Y a,z"|zeros in [0, - o0) are precisely at x; with order §;
{ »=0 i = 1l,.., L,and im, ., h(x) == -} @ S

and

a, real, h entire, i == 0, i has zeros at x, with order)
=Bi=1,., L. )

l

N = -(h(z) = i a,z’
p=0

THEOREM 2.3. Let fe N and assume that for every s > |, there exist
constants K(s) > 0, 0(s) > 0, and r(s) > 0 such that

Mdr, s) < KIS forall r == r(s). (2.9

Further, assume that there exist entire functions f, , fo € N such that

f=hH+1, (2.35)
1 has geometric convergence and there exists a real number
ry > 0 such that f, is nondecreasing for r = r, , (2.6)

there exists B > 0 such that f(x) = —B for all x = 0, 2.7)

there exist > 0 and A > 0 such that fo(x) < A[fi(x0)
forall x = r,, (2.8)
there exists a sequence of positive integers {n;} for which
1 < na/n; < p (p afixed real number) and f5'71(x) << 0
Sorall x = 0,j=1,2,... 2.9

Then f has geometric convergence.
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3. A New NECESSARY CONDITION AND A COUNTEREXAMPLE

In the following theorem we show that 1f f has geometric convergence,
then f cannot oscillate too badly as x approaches - .

THEOREM 3.1, Let fe ClO. - ) satisfy

lim f(x) 7. (3.

and let {x;47_, be a sequence of real numbers such that

O xy Xy <D (3.2)
I/vi~n) X, -, (3.3)
flx) ) Jor 0 00120 (3.4
F(xss ) Fxas)  for G 10200 (3.5)
Flxg) < [l o) for j o 1020 (3.6)
liin) /%(\E/ ?) 0 (3.7
and
for any - im ;7,(,;",;1»1,’ 0 (3.3)

!

Then f does not have geometric convergence.

Proof.  Assume that f does have geometric convergence. |t follows from
(1.1) that there exist ¢ ~- 1, sequence {p,}, swithp, ==, . n 0 1., and
Ny = 0 such that n = Ny implies

(Y (Lip)y | R7A (3.9

Now (3.1) implies the existence of r, -~ 0 such that
fxy -1 for x . (3.10)
The combination of (3.3) and (3.10) gives the existence of J, = 0 such that
j o Jy implies f(x;) l. (3.1

Furthermore, the combination of (3.4), (3.7), and (3.11) gives

lim £z g (2.12)
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Choose J; = J, ((3.7) and (3.12)) so that j = J, implies
/

S(xg5_0) 1 (xe) _ 1
fown <2 ™ o 2 G-13)
We may now use (3.11) and (3 13) to obtain forj = J;
| S R (1 _f(‘%a»z)) - 1
and Sxame)  f(xgim)  f(xa-0) f '(?(w'—l) - 2f(x2;-2) (3.14)
1 1 ' - f(xﬂ)) - 1
o T~ T T o) © e

1t follows from (3.8) that there exists integer J, > J; such thatj == J, implies
both

_f(x2}) 1 and f(x21—2) < 1

p < 3 R (3.15)
Note, furthermore, that if K = j > J, then from (3.15) we have
f(xm') (l SXaie) _ 1.
<% and P (3.16)
We now use (3.9), (3.14), and (3.16) to observe that for n == N, and
Jo < j=n
1
Pn(X2i—2) PalX2iy)
S SRS S NN SRR B
S(raie)  flxgi-0) PrlXes0)  f(xa0)  f(Xaj) PnlX25-1)
1 2
> =
2f(x35) q
— 1 ( 4/ (ng 2))
2f(X25-2)
1
=
4f(xs;-2)
That is, if J; = max(J, , Ny) then J; <{j < n implies
1 1 1
— = — . 3.17
Pl Pl ) © W) @17
In a similar fashion we can show that J; < j <C # implies
! ! > ! (3.18)

Paxe) () T AfCx)
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1t follows from (3.9) and (3.10) that p.(x) 5= 0 if x = ry and n = N, . It
now follows from this, (3.17) and (3.18) that 1/p, has a relative minimum on
each of the intervals

(Xa; 9. Xoj) Jy o J n

and a relative maximum on each of the intervals
(o) 1« Xy Jy s j o n

Thus 1p, has at least 2(n - J, -- 1) relative extrema on [r, , -+ o0). But if we
fix J; and take » large enough we see that [/p, must have at least n relative
extrema on [r,, 4 o0). But this implies that p,’(x) = 0 for at least # distinct
points. Hence, p,” - - 0 and p, is a constant for n sufficiently large. This is a
contradiction since fis not a constant. J

We now use Theorem 3.1 to construct a function f which satisfies the
necessary conditions obtained in Theorem 2.1 but which fails to have
geometric convergence.

ExampLE 3.]. Define the entire function
F(z) =z 41 4 ¢e*sin? z;
and let f be the restriction of F to the real line;
flx) == x < 1 4 ¢” sin® x,

We will show that f satisfies both the conclusion of Theorem 2.1 and the
hypotheses of Theorem 3.1. Thus f will be the counterexample alluded to in
Section 1.
Define the sequence {x;}7_, by

Xy = jwi2, j=0,1,2....

Then we have
Hxy)y = x; = 1 for jeven,

=x;-4-1--¢%  for jodd.

Clearly, this f and the sequence {x;}7., satisty (3.1)-(3.8). Thus f does not

have geometric convergence.
Given s > | define

jo= ML M+ (U)):
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It is easy to show that
Me(r, s) <200 fl)%  for r =2
Moreover, F is of finite order. Hence, f satisfies the conclusion of Theorem 2.1
but does not have geometric convergence.
4. A NEWwW SUFFICIENT CONDITION
The following theorem gives a sufficient condition for a function fto have
geometric convergence. It is essentially different from the results of Roulier
and Taylor [9] and of Blatt {1, 2]. In order to demonstrate this, an example
based on this theorem is given; the example is not obtainable from any of the

previously published results.

THeOREM 4.1. Let f€ C[0, -+ ) satisfy

fixy=n>0 on [0, + 0), 4.1)
lim () = +o0, (42)

there exist real-valued functions h and g such that h and g are
restrictions of entire functions and ['(x) = h¥(x) + g¥x), 4.3)

there exist numbers A > 0, s > 1, 8 > 0 and ry > 0 such that
Mx(r, 5) + Mp(r, s) < A(fIL)° for r=r. (4.4)
Then f has geometric convergence, and the q in (1.1) satisfies
g = s1AE0 > 1,
The proof of this theorem requires three preliminary lemmas.

LeMMA 1. Let f, h, and g be as in hypotheses (4.1), (4.2), and (4.3) of
Theorem 4.1. Then for each fixed r > O there is a sequence of polynomials
{Pan}2 o With pon € ey, , n = 0, 1,... and for which

Pon(x) >0 forall real x andn =0, 1,..., (4.5)
and for each s > 1

1 = Pl < Gygn M) + Mer. ) (@)
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Proof. For each nonnegative integer n let u, be the polynomial of best
approximation from =, on [0, r] to g, and let #, be the polynomial of best
approximation from =, on [0, r] to . Define E,(g) and E,(h) by

Efg)-- ¢ i, . for a 0, 1.
and (4.7)
E (M I} r, for # 0. 1.....
Define
Pan(X) s X)) e (X)) A Eg () for - 0.1,.. (4.8)

where £,,(f') is the degree of best uniform approximation to f” on [0, ] by
polynomials from m,, . Then we have
FO) = panx) = @) - A(x) w2 () M) — Egl(f)
(g(x) = w, LN 1,{x))
(/](X) - l-n(-\’)\)(/h(»\‘) o }?,“('\‘)) - Qn(fl)

Thus for each n == 0, 1,...

‘/-, — Poax iy gyt & Uy h Uy oy
o, e Ea(fR (4.9)
But it is well known that for each # = 0., |.... we have
Cg oy, 3, 3MLr, s)
and (4.10)

v, o 37 < 3M(r, s)

Moreover. by a theorem of S.N. Bernstein [5, p. 91} we have, for any 5 - 1.
n- 0 1.

2M (1, s}

Bl
o 2Murs)
En(h) S 7(5 L 1) g’ (41 1

and
2M (r, s) _ 2

Es(f7) = (Jf“f s Gu:'7];;; (M (r, 8) = Mpe(r, $)).

A combination of {(4.9), (4.10), and (4.11) together with the observation that

(M (r, $)¥ = Mp(r, s)

and
(M) (r, sY* = Mya(r, s).



RATIONAL APPROXIMATION 369

gives

L~ Pl < (;:‘ST)T [Ma(r, 5) -+ My(r, 5)1

This completes the proof of Lemma 1.

LemMmA 2. For each n = 0, 1,... define the sets

w7 = {pem, | p(x) = 0 for all x}
and
m, ={p€m, | p'(x) = 0 for all x}.

If r > 0 is given and if f € C|0, r] define

Ei ()= inf [~ pl,
and
E;zr(f) = Dier;f/ l:f a4 Hr .

Then if f has a continuous derivative on [0, r] we have

Eonof) SrEZ ) for n=0,1,.. (4.12)

The proof is a direct application of classical techniques and is consequently
omitted.

LEMMA 3. Let f and g be real-valued functions which are restrictions of
entire functions and which satisfy: there are constants A > 0,8 >0, s > 1,
re > 0 for which

M[r, s) < Af(R)° forr =1y . 4.13)

Then either g is a polynomial or given any positive integer M there is a number
Ry > 0 such that

fr = for r =R, (4.14)

The proof of this lemma is an easy application of Liouville’s theorem. The
details are omitted.

Proof of Theorem 4.1. The method of proof is essentially the same as
that used in proving the sufficient condition for geometric convergence in
Theorem 2.2. We may assume that fis not a polynomial, since the theorem
is trivial in this case.

For each r > 0 define {g,(x, r)};., with g, € 7, so that

Nf— qa(cs r)“r = Erll.r(f)
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We know that this sequence of best restricted approximations exists for each
r > 0. Now for each r define

Palo, 1) == gulx, r) -+ E; (f), a o= 0, 1.,

This guarantees that

palx, 1) 2 f(x) 2 forali xin {0, r|,
and (4.15)
pax.r) 2 f(r) =2 -0 forall x - rforn=0,1,...
Moreover,
VS ey o 2EL () - 00T (4.16)

Now the fact that fis positive and increasing together with (4.15) gives

pod | ; 2

|ﬁ]"(,\‘) - = *"(*\*’ i ?(;) for x - r, n 0, l, . (417)
Also, (4.16) and (4.15) give
{AV . | = sy, ) — O 28 )
0 palx, r) ! S pulxsry 9P
for 0 <<x:xr, n=201,. . (4.18)

But Lemmas | and 2 combine to give

Edninlf) == i) = Ganuslos 1) = rEgy (]7)
8

(8 ,_ ”;S” [M (l‘ 5) + Mh (l’ b)] (419)

Now let 4, s, 6, ry be such that (4.4) holds and combine this with (4.18) and
(4.19) to obtain

vl ! ‘ 16
i U S M
T el e e M 9 Mistr )]
l6rA ; .
ZQ(F":*]‘)*;; /i for r _ o

But since fis positive and increasing on [0, - o), this inequality implies that

il 1 i 16
[ I e ¢
L PannCa 0l T — Dsm for (4.20)
) X
= !j"—éj—) for r = r,,

where B == 16A4/%*(s -— 1) does not depend on r.
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Recall that we are working under the assumption that f'is not a polynomial.
We now combine (4.1), (4.3), and (4.4) to obtain

M(r, s) < Af(r)? for r=r,.

But /' is not a polynomial. Thus an application of Lemma 3 gives r; == r,
for which r == r, implies

fr) =r
Thus for r = r, (4.20) becomes
L _ Bfiry
“ f Pansa(ss 1) Iy “ = T for r=>r @.20)

where ¢ = 0 + 1.
Now since lim,_., f(r) = -+ o we have N > 0 and r(n) = r; for each
n > N such that

f(r(n)) — gn/A+d),

Note that lim,_., r(n) = -+ 0. Now for each n = N set

Penia(X) = Ponax, r(n)).
Then from (4.21) we have

Bf(r(n))"’ B ((1+4) B B

“ Prnct r(n) 5" s s/ for n >N,
(4.22)

and from (4.17) we have

< -2 d

|75~ @ | < To@y — v for x> r6) and n>N
(4.23)

A combination of (4.22) and (4.23) now gives

B2
” | < for =N (4.24)

The proof is now completed by setting p.(x) =1 for n < 2N + 1 and if
n > 2N + 1 set

Prn = Porta if n:2k—{—lor2k—{—2 l

We now employ Theorem 4.1 in conjunction with Theorem 2.3 to obtain
an example of a function f with geometric convergence which is not
obtainable from the previous sufficient conditions.



372 HENRY AND ROULIER

ExAaMPLE 4.1. Let

Fix) = Le*[2 + sin(2x) + cos(2x)]
and let
Sox)y e

Let f(x) = fi{x) - fo(x). Note that

£/(x) = (e” cos x)
and
Ji'(x) ¢

It is easy to see that f; satisfies the hypotheses of Theorem 4.1 with
(x) - e cos x and g{x) =: 0.

Hence, f; has geometric convergence.

Itis also easy to see that f* = f - f, satisfies the conditions of Theorem 2.3.
Hence, f has geometric convergence.

Notice, however, that

f(x) = (e cos x)? - e

will assume negative values for arbitrarily large v. Thus there s no r for
which f'is increasing on {r, -+ o). Functions with behavior similar to that of
the fin Example 4.1 (lim,__, f(x) - - «, fnot increasing on {r. - oo} for
any r, and f has geometric convergence) are not readily obtained from any
combination of theorems found in the literature prior to Theorem 4.1 of
this paper.

We end this section with a corollary to Theorem 4.1 which shows that
Theorem 4.1 is closely related to an approach suggested in a private comniu-
nication to the second author by Professor G. D. Taylor.

COROLLARY. Suppose that f is a positive real-valued function on [0, - 20)
and is the restriction of an entive function, and that hm, . f(x) = -=-oc.

o

Assume furthermore, that there is an entire function g(z) = 3. ,a;z' such
that
F(@ = g2) ¥2) where  §(z) == Y a;z’ (4.25)
j=0
and d; is the conjugate of a, , and that there are constants
A >0 06>0 s5s>1 and o >0
such that
My(r.s) <C ALY for rzr. (4.26)

Then f has geomelric convergence.
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Proof. 1f one defines

h(z) = ¥(g(2) + £(2))
and
hy(z) = (1)21)(g(2) — £(2))
then
f'@) = h™2) + h¥(2),

and #, and h, are real valued on [0, + c0).

It is now easy to see that /1, and 4, satisfy the conditions of Theorem 4.1.
Hence, by Theorem 4.1 f has geometric convergence.

We remark that there are sufficient conditions in the literature for a function
to satisfy (4.25) (cf. [3].

5. REMARKS AND CONCLUSIONS

Example 4.1 shows that it is possible for a function with geometric conver-
gence to oscillate somewhat. On the other hand, Theorem 3.1 shows that
such functions cannot oscillate too much.

It appears that the complete characterization of functions f with geometric
convergence will have to involve the rate of growth of

M(r)m{r) as r— 4+

where M (r) == || fl, and mgr) = inf,, | f(x), as well as the necessary
conditions in Theorem 2.1.

Another interesting question is whether f has geometric convergence if it
satisfies the necessary conditions in Theorem 2.1 and is increasing on
[r;, ~o0) for some r; == ry.
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