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I. INTRODUCTION

Let I be a continuous real-valued function on [0, + CD) and define

ill!!,., = sup{1 lex)!: °~ x}.

and
up, ~ sup{1 j(x)!: °~ x ~ r} for r > °

For each nonnegative integer fl define Tr n to be the set ofalgebraic polynomials
with real coefficients of degree not exceeding n.

We investigate the following problem: For which functions/E qo, + co)
does there exist a number q > 1 and a sequence of polynomials {Pn}';;=o
such thatpn E 'TT n , n = 0, 1,2,... , and

lim sup (ii(l/.l) - (!!Pn)ll",,)l(lI ~ l!q?
n-)XC

(I. I)

The complete answer to this problem is not yet known although many
authors in recent years have investigated this. If there exists a q > 1 and a
sequence of polynomials such that this happens for some Ithen we say I has
geometric convergence. Thus we seek to classify all IE qo, + CD) which
have geometric convergence.

The first result on this problem established that j(x) == eX has geometric
convergence (see (4)). This result was extended to other functions in [6). The
first in-depth study was made by Meinardus et al. [7]. They obtained a
necessary condition as well as a sufficient condition for I to have geometric
convergence. Since the appearance of [7], several researchers have suggested
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362 HENRY AND ROULIER

that the necessary condition obtained in [7] may also be sufficient. In parti
cular, Roulier and Taylor [9] obtain a less restrictive sufficient condition and
conjecture that the necessary condition in [7] is also sufficient. Blatt [1.2]
further weakens the hypotheses of the sufficient condition given in [7). These
results further suggested that the necessary condition in [7] might also be
sufficient.

In this paper we obtain a new necessary condition for geometric conver
gence. This in turn, provides the machinery for constructing a counterex:lmple
to the above conjecture. That is. a function f is defined which fails to have
geometric convergence, and yet f satisfies the necessary condition obtained
in [7]. In addition we obtain a new sufficient condition that is essentially
different ['rom those already known. This, in turn, will be used to generate
new examples of functions which have geometric convergence but with
properties that are somewhat surprising.

The details of the previous results and the terminology needed to under
stand these are presented in the next section.

Other related results and a large bibliography of such results appear in the
survey paper [8].

2. NmATlO:\ AND PREVIOLiS Rrsuus

Let I' °and .I' I be given, and let E(r, .1') denote the unique ellipse
in the complex plane with foci at x 0 and x I' and semimajor and
semiminor axes a and b, respectively, with b!a (\2 1)1(s2!- I). If((.::-) is
any function analytic inside and on the boundary of E(r . .1') define

;\1,(1', .1') maxi f(.::-):.::- E(r, .1'):.

The necessary condition obtained in [7) is given in the following theorem.

THEOREM 2.1. Let f be a real continuous fil/1etion ('0,0) on [0, ~f.J), and
assume that there exist a sequel1(,(, of real polynomials i Pni".", with 17" E 7'"

for n 0, I, .... and q I such that

lim sup ('( If)
II .1

(/, I. (2.\ )

Then, there exists an entire function F(z) lIith F(x)
is of.finite order p. In addition, for every .I' I,
K(s, q) > O. (J (J(s, q) 0, and 1'0 1'0(.1'. q)

((x)for aff x O. and F
there exist constants K
o such that

/v1,(r, s) K(iJ!r)O f(Jr all r I'll' (2.2)

The sufficient condition in [7) is given by the following theorem.
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THEOREM 2.2. Let fez) = L:~o akzk be an entire function with ao> °and
ak ~ °for all k ~ l. If there exists real numbers A > 0, s > l, () > 0, and
ro > °such that

for all r): ro

then there exists a sequence of real polynomials {Pn}~'~o with Pn E 7Tnfor each
n ~ 0, and a real number q ~ Sl/11+0) > I such that

lim sup (!lO/f) - O/Pn)ll x)1/1l = I/q I.
n->oo

It is suggested in [7] that the hypotheses here are probably too strong.
A more general theorem was given by Roulier and Taylor [9] and this was
generalized further by Blatt in (f, 2]. We give this latter theorem [2]. In order
to do this, we need to introduce some additional notation. Let

with corresponding nonnegative integers f31 ,... , f3L be given. Define

l '0 Iav real, h an entire transcendental function whose)

N = h(z) = l~) avzv
~e~os in [0, + CXJ). are precisel~_at, ':i with order f3i \

\ /-- I, ... , L, and hm,r+', hex) -- t X ,

and

- \ ~ v Iav real, h entire, h # 0, h has zeros at Xi with order!
N = ,h(z) = '::-0 avz ?:f]i i = ],... , L. \

THEOREM 2.3. Let fEN and assume that for every s > I, there exist
constants K(s) >0, O(s) > 0, and res) > °such that

MAr, s) :s;; K(s)(lIf!:r)Ols> for all r;:;" res). (2.4)

Further, assume that there exist entire functions fr ,f2 E IIi such that

f = It + h, (2.5)

fr has geometric convergence and there exists a real number
ro > °such that fr is nondecreasing for r ~ ro , (2.6)

there exists B > °such that fix) ?: - B for all X ): 0, (2.7)

there exist if! > °and A > °such that hex) :s;; A [fr(x))'''
for all x ?: ro , (2.8)

there exists a sequence of positive integers {nJ for which
1 < nH1/nj < P (p a fixed real number) andf~nj+1l(x) "'; °
for all x ~ O,.i 0= l, 2,... . (2.9)

Then f has geometric convergence.
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3. A NEW NECESSARY CONDITION A:-;D A COUNTEREXAMPLE

In the following theorem we show that if f has geometric convergence,
then( cannot oscillate too badly as x approaches y).

THEORH1 3.1. Let fe qO. . CIJ) .1at i,l/i ,

lim 1(.\)
\

and let {xjl;~o be a sequence o{l'eal numbers such that

(3.1 )

0 X Il Xl

lim .\", D .
I .'

f(x~;l f(.\"~J ~) je)r

f(x~j I) J(x~; ,) /ell"

f(x~j) f(x~; d je)r

lim
j(.\"~,)

()
; (r:~,-,)

and

O. I. 2..

1.2....

I. 2....

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

for all.\' I' o. (3.X)

Then f docs not hal'l' gl'ol11e!l'ic convergence.

Proof Assume that f does have geometric convergence. It follows from
(1.1) that there exist q I. sequence {[I,,1: Il with [I" c Tr N • /1 O. j.. and
Nil 0 such that n Nil implies

(l I) (l P,,)

Now (3.1) implies the existence of I'll

1(/"

o such that

(3.9)

((Xl for x r~j . (3.10)

The combination of (3.3) and (3.10) gives the existence of 10 o such that

j J il implies f(Xi) I. (3.11 )

Furthermore. the combination of (3.4), (3.7). and (3.11) gives

o. (). \ 2)
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Choose J1 ? Jo «3.7) and (3.12» so that} ? J1 implies

365

and (3.13)

We may now use (3.11) and (3.13) to obtain for} ~ J 1

and (3.14)

It follows from (3.8) that there exists integer J2 ~ J1 such that} ~ J2 implies
both

and (3.15)

Note, furthermore, that if k ?} ? J2 then from (3.15) we have

and (3.16)

We now use (3.9), (3.14), and (3.16) to observe that for n ~ No and

Pn(X2i-2) PnCX2i-l)

= _1 1_ + I __1_ + _._'__ ---;1_---,-
f(X2i-2) f(X2i-l) Pn(x2i-2) f(x2i-2) } (X2i-l) Pn(x2i-l)

>: I 2
~ 2!(X2i-2) qn

= _1__ (I _ 4!(x2i-2)\
2!(X2i-2) qn I

1
~ ( ).4ji X2i-2

That is, if J3 ~ max(J2 , No) then J3 ~} ~ n implies

I 1
( ) ~4( ).Pn X 2i-l .f X2i- 2

(3.17)

In a similar fashion we can show that J3 ~ j ~ n implies

(3.18)
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It follows from (3.9) and (3.10) that Pn(x) .jcc 0 if x ); f o and 11 No. It
now follows from this, (3.17) and (3.18) that Ijp" has a relative minimum on
each of the intervals

and a relative maximum on each of the intervals

Ja j n.

Thus I;p n has at least 2(n - J;j I) relative extrema on [1"0' ,(0). But if we
fix J:l and take n large enough we see that 1!p." must have at least n relative
extrema on [1"0 , 00). But this implies that p,/(x) 0 for at least II distinct
points. Hence, P,,' 0 and p" is a constant for II sufficiently large. This is a
contradiction since f is not a constant. I

We now use Theorem 3.1 to construct a function f which satisfies the
necessary conditions obtained in Theorem 2.1 but which fails to have
geometric convergence.

EXAMPLE 3. I. Define the entire function

F(z) I + eZ sin2 z;

and letf be the restriction of F to the real line;

I(x) x 1 -I e) sin~ x.

We wiII show that f satisfies both the conclusion of Theorem 2.1 and the
hypotheses of Theorem 3.1. Thus f will be the counterexample alluded to in
Section I.

Define the sequence {xJ;~o by

Then we have

I(x)) =. Xi

i = 0,1,2, ....

for j even,

for i odd.

Clearly, this f and the sequence {Xj}~:'o satisfy (3.1)-(3.8). Thus f does not
have geometric convergence.

Given s I define

fL 1[1 + 1(s + (l/s))).
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for r:;;: 27T.

Moreover, Fis of finite order. Hence,jsatisfies the conclusion ofTheorem 2.1
but does not have geometric convergence.

4. A NEW SUFfICIENT CONDITION

The following theorem gives a sufficient condition for a function f to have
geometric convergence. It is essentially different from the results of Roulier
and Taylor [9] and of Blatt [1,2]. In order to demonstrate this, an example
based on this theorem is given; the example is not obtainable from any of the
previously published results.

THEOREM 4. J. Let fE erO, +- w) satisfy

j(x) :;;: YJ > ° on [0, +-w), (4.1)

lim f(x) = +- w, (4.2)
x----;o-LOC

there exist real-valuedfunctions handg such that hand g are

restrictions of entire functions and !,(x) = h2(x) +- g2(X), (4.3)

there exist numbers A > 0, s > 1, B > °and ro > °such that

for r:;;: ro . (4.4)

Thenfhas geometric convergence, and the q in (1.1) satisfies

q ~:> Sl/2(2+8) > 1.

The proof of this theorem requires three preliminary lemmas.

LEMMA 1. Let f, h, and g be as in hypotheses (4.1), (4.2), and (4.3) of
Theorem 4.1. Then for each fixed r > °there is a sequence of polynomials
{P2n}~~0 with P2n E 7T2n , n = 0, 1,... and for which

P2n(X) > ° for all real x and n = 0, J'00', (4.5)

andfor each s > 1

II!' - P2n IIr ~ -(_i-1) n [M",(r, s) +- M",(r, s)]. (4.6)s -- s
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Proof For each nonnegative integer 11 let u" be the polynomial of best
approximation from 1T" on [0, r] to g, and let 1'" be the polynomial of best
approximation from 1T" on [0,1'] to h. Define En ( g) and E,,(h) by

E,,(g) (T (( n for II O. L ...,~

and (4.7)
E,,(h) h 1'1/ ,. for II n. 1....

Define

P2"(X) li,,~(X) "; 1'}(x) E2"U') for 11 0, 1,. ... (4.8)

where E2"U') is the degree of best uniform approximation to l' on [0, r] by
polynomials from 1T2" . Then we have

f'(x)

Thus for each 11 c= 0, I, ...

g2(X) 112(X) u,,2(x)

(g(x) u,,(.\))(g(x)

(h(x) " 1',,(x))(I1(x)

1',,2(X) ". E2nU')

u,,(x))

/On(x)) .- E2"U').

(T
.~

. h
u" g li",

£2"U'),

h,·, 1'" ,.

(4.9)

But it is well known that for each 11 O. I. ... we have

(1 Un 3 " r 3.M,,(r, s)
,~ ,~

and
h ,. , 3 '11 3MII (r, s).

"

(4.10)

Moreover. by a theorem of S.N. Bernstein [5, p. 91] we have, for any s 1.
n O. I. ...

and

E,Jg)
2M,,(r. s)
C\~--T)~" .

2M/,(r, s)
(~~-1)'~\" ' (4.11)

A combination of (4.9), (4.10), and (4.11) together with the observation that

and
(A1,,(r, s))Z = M,,2(r, .1').
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gives

This completes the proof of Lemma 1.

LEMMA 2. For each n = 0, 1,... define the sets

1Tn+ = {p E 1Tn Ip(x) ? Ofor all x}
and

1Tn' = {p E 1Tn Ip'(x) ? 0 for all x}.

If r > 0 is given and iffE qQ, r] define

E~Af) = inf+ IiI - p II,
PE1Tn

and

E~.,(f) = inf, I: f - p Ii, .
pE1fn

Then iffhas a continuous derivative on [0, r] we have

369

for 11 = 0, 1, .... (4.12)

The proof is a direct application of classical techniques and is consequently
omitted.

LEMMA 3. Let f and g be real-valued functions which are restrictions of
entire functions and which satisfy: there are constants A > 0, () > 0, s > l,
ro > 0 for which

Mg(r, s) ~ Af(r)8 for r ? ro . (4.13)

Then either g is a polynomial or given any positive integer M there is a number
R M > Q such that

f(r) ? ,.~[ for r? RM • (4.14)

The proof of this lemma is an easy application of Liouville's theorem. The
details are omitted.

Proof of Theorem 4.1. The method of proof is essentially the same as
that used in proving the sufficient condition for geometric convergence in
Theorem 2.2. We may assume thatfis not a polynomial, since the theorem
is trivial in this case.

For each r > 0 define {qn(x, r)}:=o with qn E 1Tn' so that
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We know that this sequence of best restricted approximations exists for each
I' > O. Now for each I' define

1/ 0, I" .. ,

This guarantees that

for all .\ in (0, 1'],Pn(x,r) fIx) YJ 0
and

p,,(x,r) f(r) YJ 0

Moreover.

for all x I' for II 0, J.,., ,
(4.15)

if ~- Pn(-, r)i r 2£;,.,.(1), 1/ 0, 1, ... (4.16)

Now the fact that f is positive and increasing together with (4. J5) gives

I I I'

1

-- .- ---._-~. I
f(x) p,,(x, r)

2
fIr)

for x . r, 11 0, I, ... , (4.17)

Also, (4.16) and (4.15) give

I_J I_~I
fIx) Pn(x, 1') ,

, p,,(x, 1')- fIx)! 2E~.rU)

-7(:~)pn-().:'--;Y --YJ~

for ° x 1', 1/= 0, I, .... (4.18)

But Lemmas 1 and 2 combine to give

E~n'l.rCf) --Q2n"ck,r)i,. rE~~.rU')

81'
-.--..--.- [M 2(1' s) T M h2(r s)). (4.19)
(s---I)s" .0' ,

for I'

161'
ry2[~-~-T)S;'" [iH,,"{r, s) + M h2(r, s)]

16rA
'02(s.=-ffSn

Now let A, s, &, 1'0 be such that (4.4) holds and combine this with (4.18) and
(4.19) to obtain

1
l -- fhn ~~~-l:)

But since f is positive and increasing on [0, +XJ), this inequality implies that

(4.20)
r?;;ro ,for

Ii l.~ L-:-~ Ii:: _2__16A
_n /(r)8 I'

Ii f P2n+l( , r) I'T YJ (s -- 1) s

Brj(r)O

where B= J6AIYJ 2(s .. I) does not depend on r.
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Recall that we are working under the assumption that/is not a polynomial.
We now combine (4.1), (4.3), and (4.4) to obtain

for r ~ ro.

But l' is not a polynomial. Thus an application of Lemma 3 gives r1 ~ ro
for which r ~ r1 implies

fer) ~ r.

Thus for r ~ r1 (4.20) becomes

(4.21)

where lj; = () + I.
Now since limT~<x,f(r) = + co we have N> 0 and r(n) ~ r1 for each

n .~ N such that
f(r(n)) = s,,/(1+$).

Note that lim,,~ro r(n) = +00. Now for each n ~ N set

P2"+l(X) = P2"+1(X, r(n)).

Then from (4.21) we have

II
! ~ _1_11 ~ Bf(r(n))/b = Bs,,/b/u+$) = _B_
f P2"+1 r(,,) s" s" s"((1+/b)

and from (4.17) we have

for 11 ~ N,

(4.22)

I I 1 I 2 2
f(x) - P2n+1(X) ~ f(r(n)) =S"/11+*)

for x ~ r(n) and n ~ N.

(4.23)

A combination of (4.22) and (4.23) now gives

II
I 1 II :< B + 2T- P2"+l ro "'. s,,/(1+/b) for n ~ N. (4.24)

The proof is now completed by setting p,,(x) = 1 for n < 2N + I and if
n ~ 2N + I set

Pn = P2k+l if n = 2k + I or 2k + 2. I

We now employ Theorem 4.1 in conjunction with Theorem 2.3 to obtain
an example of a function / with geometric convergence which is not
obtainable from the previous sufficient conditions.
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EXAMPLE 4.1. Let

j~(x) ~e2"[2 -[ sin(2x) cos(2x)]
and let

fix) e-'.

Let f(x) =c f~(x) nx). Note that

(e' cos xf
and

j~'(x) e'.

It is easy to see that /1 satisfies the hypotheses of Theorem 4.1 with

h(x) e'" cos x and g(x) = 0.

Hence,j~ has geometric convergence.
It is also easy to see thatl f~ --i f2 satisfies the conditions of Theorem 2.3.

Hence, f has geometric convergence.
Notice, however, that

f'(x) (e' cos xf c' ,

will assume negative values for arbitrarily large .Y. Thus there is no I' for
which/is increasing on [I', ee). Functions with behavior similar to that of
the f in Example 4.1 (lim, ._. , f(x) UJ, f not increasing on [I', -ee) for
any 1', and f has geometric convergence) are not readily obtained from any
combination of theorems found in the literature prior to Theorem 4.1 of
this paper.

We end this section with a corollary to Theorem 4.1 which shows that
Theorem 4.1 is closely related to an approach suggested in a private commu
nication to the second author by Professor G. D. Taylor.

COROLLARY. Suppose that f is a positirc real-valued function on [0, C1J)

and is the restriction of an entirc function, and that lim" ,,,,!(x) = UJ.

Assume furthermore, that there is an cntirc function g(z) L~"o a;z' such
that

1'(z) = g(z) ,~(z) Irhere g(z) = L UjZ'
j~O

(4.25)

and il j is the cOl~iugate of {l, , and that there are constants

such that
A 0, 0 0, s> I and

1'0 > °

Then f has geometric convergence.

(4.26)
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hlz) == (lj2i)(g(z) - g(z»
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and hI and 112 are real valued on [0, + (0).
It is now easy to see that hI and h2 satisfy the conditions of Theorem 4.1.

Hence, by Theorem 4.1 / has geometric convergence.
We remark that there are sufficient conditions in the literature for a function

to satisfy (4.25) (cf. [3]).

5. REMARKS AND CONCLUSIONS

Example 4.1 shows that it is possible for a function with geometric conver
gence to oscillate somewhat. On the other hand, Theorem 3.1 shows that
such functions cannot oscillate too much.

It appears that the complete characterization of functions/with geometric
convergence will have to involve the rate of growth of

as r -+ + 00

where Mlr) == II/I'r and mlr) = infr), I f(x)!, as well as the necessary
conditions in Theorem 2.1.

Another interesting question is whether f has geometric convergence if it
satisfies the necessary conditions in Theorem 2.1 and is increasing on
h, .-L (0) for some r1 ~ ro •
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